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Abstract 

In this paper we will define a generalized procedure of induction of quantum group representations 
both from quantum and from coisotropic subgroups proving also their main properties. We will then 
show that such a procedure realizes quantum group representations on generalized quantum bundles. 
© 1999 Elsevier Science B.V. All rights reserved. 

Subj. Class.: Quantum groups 
1991 MSC: 16W30; 17B37; 81R50 
Keywords: Quantum subgroups; Coisotropic subgroups; Induced representations; Quantum bundles 

1. Introduction 

Among the various methods to construct representations of  a given Lie group, the in- 

duction procedure plays with no doubt a central role. On the one hand it gives a strong 

insight into the representation theory of  a large class of  non-semisimple Lie groups. For 

example, it solves completely the semidirect product case, linked as it is to the orbit method 

for nilpotent and solvable groups. On the other hand it gives foundations to the geomet- 
ric theory of  representations of  semisimple Lie groups, from Borel-Weil-Bott  theorem 

(see for example [ 19]). Induction of  quantum group representations was developed in [ 16] 

and, later, in [13]. Recently a very detailed work, [14], summarizes known results for the 

compact case and in [2] some results on infinite-dimensional induced representations for 

non-semisimple quantum groups are obtained. The quantum theory, up to now, gives much 

less insight than its classical counterpart and suffers from a strong limitation: the extreme 
rarity of  quantum subgroups [17]. For example [15,18] deal with induced representations 
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for some non-semisimple quantum groups without approaching and solving the problem 
that they do not fit well the Parshall-Wang setting because they do not start with a well- 

defined quantum subgroup. To overcome this problem the theory of coisotropic quantum 
subgroups introduced in [9] seems useful and unavoidable. 

Let us briefly recall some basics of the theory of subgroups of quantum groups, as 
developed in [4,9] (to which we refer for further motivations). A more detailed account of 
the problems we will deal with can also be found in [10], while for the general theory of 
quantum embeddable homogeneous spaces we refer to [ 11 ]. 

Definition 1.1. Given a Hopf algebra Aq w e  will call quantum subgroup of Aq any pair 

(Bq, 7r) such that Bq is a Hopf algebra and 7r : Aq --+ Bq is a Hopf algebra epimorphism. 
We will call coisotropic quantum left (resp. right) subgroup any pair (Cq, ~r) such that C# 
is a coalgebra and a left (resp. right) Aq-module and cr : Aq ~ Cq is a surjective linear 
map which is also a coalgebra and a left (resp. right) A,/-module homomorphism. 

As usual in the classical case subgroups can be identified to the kernel of the restriction 
epimorphism. With this identification quantum subgroups are in 1:1 correspondence with 
Hopfideals in Aq while left (right) coisotropic quantum subgroups are in 1:1 correspondence 
with bilateral coideals which are also left (right) ideals. 

The weaker hypothesis defining coisotropic quantum subgroups is not descending from 
a need of generality for its own sake. It is rather quite naturally imposed by a detailed 
analysis of the semiclassical limit, i.e. the underlying Poisson-Lie theory. In this limit 
quantum subgroups correspond to Poisson-Lie subgroups, a fairly rare object. The class of 
Poisson-Lie subgroups is not closed by conjugation: conjugating a Poisson-Lie group gives 
a coisotropic subgroup. Quite naturally, then, such subgroups play a role in the theory of 
Poisson homogeneous spaces. More precisely, every Poisson homogenous space with at least 
one zero-dimensional symplectic leaf is a quotient by a coisotropic subgroup. Furthermore, 
it has been proven by Etingof and Kazhdan [12] that any such quotient can be suitably 
quantized. Quantum coisotropic subgroups are in "good" correspondence with quantum 
embeddable homogeneous spaces (where good means that such correspondence is bijective 
provided some technical conditions are satisfied) and their semiclassical limit, as expected, 
gives exactly coisotropic subgroups. For these reasons they seem a good class of quantum 
subgroups to start with. 

The link with embeddable quantum homogeneous spaces is given as follows: 

Definition 1.2. Let Aq be a Hopf algebra. A right (resp. left) quantum embeddable homo- 
geneous space of Aq is a subalgebra which is also a right (resp. left) coideal. 

Proposition 1.3. Let (C, ~r) be a right (resp. left) coisotropic quantum subgroup of Aq. Then 

BC = { f  E Aql(cr ® i d ) A f  = or(l) @ f} 

is a quantum right embeddable homogeneous space and, respectively 

B c = { f  E Aql( id  ® o-)z~f = f @ o'(1)} 
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is a quantum left embeddable homogeneous space. Conversely let Bq be a right (resp. left) 

embeddable quantum homogeneous space; then the right (resp. left) ideal generated by 

{ b -  e (b ) 1 } is a bilateral coideal in Aq and identifies a right (resp. left) coisotropic subgroup. 

In this paper we generalize induced quantum group representations to coisotropic quan- 

tum subgroups. We also show how the corresponding corepresentation space of the function 

algebra can be intrepreted as the space of sections of an associated vector bundle to a prin- 
cipal coalgebra quantum bundle, this last concept being recently introduced by Brzezifiski 

[5,8], generalizing the classical relation between induced representations and homogeneous 
vector bundles [ 19]. We will not deal with the measure-theoretic concepts needed to develop 

correctly all unitariness aspects, which are the subject of a forthcoming paper. 

2. Quantum induction 

In this section we define induced corepresentations from coisotropic quantum subgroups 

and prove their main properties. Let us begin recalling some definitions. Let A be a Hopf  

algebra and let V be a vector space (we are considering a fixed base field of zero characteris- 

tic). V is said to be a right corepresentation of A if there exists a linear map PR : V --+ V ® A 

such that 

(id ® e) o PR = idv  , 

( id ® A) o PR = (PR ® idA) o PR. 

(2.1) 

(2.2) 

We will say that V is a left corepresentation of A if there exists a linear map PL : V ~ A ® V 

such that 

(s ® id) o PL = idv ,  

(A ® id) o PL = (idA ® PL) o PL- 

(2.3) 

(2.4) 

Let us remark explicitly that above definitions are well posed for any coalgebra A. 
Let us consider now a fixed quantum group Aq = Aq (G) and a coisotropic quantum 

subgroup (Cq, Jr) = (Aq (K) ,  Jr) (when we do not specify coisotropic subgroups to be left 
or right we mean the result is valid in both cases). 

Proposition 2.1. The map R = (id ® 7r) o A G : Aq(G)  ~ Aq(G)  ® A q ( K )  defines a 
right corepresentation o f  Aq (K)  on Aq(G).  Similarly the map L = (re ® id) c A G defines 

a left Aq (K)-corepresentation. 

Proof.  We will directly verify conditions (2.1) and (2.2) for R. The proof for L proceeds 
along the same lines. Let us start with (2.2). Left-hand side equals 

(id ® A K ) ( R f )  = E fCl) ® (AK O 7r)(ft2) ) = Z ftl)  ® 7r(fc2)) ® rr(f(3)), 
(f)  (f)  
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where we have used coassociativity of A6 together with the fact that 7r is a coalgebra 

morphism. As for the right-hand side 

((R ® id) o R ) f  = Z R(f l l))  ® Jr(f(2t)= Z ( i d  ® 7c)(ftlh,~ ® ftl)(:)) ® 7r(f,2,) 
(1) (.t) 

= Z f < l  ) ® 7r(fl2)) ® 7r(f(3)), 
q f) 

again from coassociativity; this proves (2.2). For what concerns (2.1) we have 

( i d ® ~ x ) ( R f )  = Z f < l  ) ® (~x o 7r)(f~2)) 
If) 

---- Z Jil) ® eG(fl2)) = ((id ® ~G) o A) f = .f, 
(.i) 

which completes the proof. [] 

Lemma 2.2. The following identities hold: 

( Ac  ® id) o R = (id ® R) o Ac ,  (2.5) 

(id ® AC) o L = (L ® id) o A c. (2.6) 

Proof. The first identity follows from the chain of equalities: 

(zig ® i d ) ( R f ) =  Z ZIG(fII~) ® 7r(fl2)) = Z f ~ l ) ®  fl2) ® 7r(f(3)) 

(f) (.f) 

= (id ® R ) ( A G f )  = Z  f(l)®R(f(2))---- Z f(I)® f(2) ® 7r (f(3)). 
(i) (,/) 

The second one can be proven in a similar way. [] 

Straightforward calculations allow to prove also the following: 

Lemma 2.3. Let (Aq (K), 7r) be a left coisotropic subgroup; then the following multipli- 

cation properties hold true: 

L(.fg) = z iG( f )L(g) ,  R ( fg )  = / I f .  R(g) V L g ~ A,/(G), (2.7) 

where, denotes the action of Aq (G) ® Aq (G) on A,/(G)® Aq (K) given by ( f  ®g). (h @c) = 
f h  ® g • c. Similarly if (Aq(K),  zr) is a right coisotropic subgroup we have: 

L ( f g )  ---- L ( f )AG(g ) ,  R ( fg )  = R ( f ) A G ( g )  V L g E aq(G). (2.8) 

Let us now start from a right corepresentation PR and a left corepresentation PL of the 
coalgebra Aq (K) on the vector space V. Define 
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indG(pL) = {F E Aq(G)® VI(R ® id)(F)  = (id ® pL)(F)}, (2.9) 

indG(pR) = {F 6 V ® Aq(G)l(id @ L )F  : (PR @ id)(F)}. (2.10) 

Both these spaces are kernels of certain linear operators and, as such, are closed vector 

subspaces of Aq (G) ® V and V @ Aq (G). 

Proposition 2.4. A G @ id defines a left corepresentation of Aq (G) on ind G (PL) and id ® 
A G defines a right corepresentation of the same space on ind G (PR). 

Proof. Let us prove the first claim. To begin with we need to prove that (AG @ id)(F) E 
Aq (G) ® ind G (PL). Linearity of all the operations involved implies that we can consider 

only vectors of the form F = f ® v. Then we need to prove that 

(id ® R ® id)( A G ® i d ) ( f  ® v) = (id ® id ® pL)(AG ® i d ) ( f  ® v). 

Using the first formula in Lemma 2.2 the left-hand side equals 

(((id ® R) o AG) ® i d ) ( f  ® v) = (((A G ® id) o R) ® i d ) ( f  ® v) 

= (AG ® id ® id)(R ® i d ) ( f  ® v), 

which, recalling that f ® v belongs to ind G (PL), equals 

( AG ® id ® id)(id ® PL)(f  ® v) = (id ® id ® pL)(AG ® i d ) ( f  ® v). 

Now, the corepresentation condition (2.2) is equivalent to coassociativity of A c and the 

condition (2.1) is equivalent to properties of the counity eG. The second claim follows 

similarly from the second formula in Lemma 2.2. [] 

Definition 2.5. Given a fight (resp. left) corepresentation PR (resp. PL) of the quantum 
coisotropic subgroup ( A q (K), Jr ) the corresponding corepresentation i d ® A G on ind G (PR) 

(resp. AG ® id) on ind G (PL) of Aq (G) is called induced representation from PR (resp. PL) 
on Aq (G). 

Remark.  In case PL is a one-dimensional corepresentation the induced representation is 
given by 

indG(pL) = {f  ~ Aq(G)I(R ® i d ) f  = (id ® pL)f}  

with coaction A G. Similarly if pR is one-dimensional 

ind~(pR) = {f  E Aq(G)l(id ® L ) f  = (PR ® id ) f } .  

In both cases the induced representations can be seen as subrepresentations of the regular 

(left or right) representation (Aq(G), AG). In agreement with the classical case we will 
call monomial such representations. 

As usual in representation theory we will often identify the representation space with the 
representation itself, being clear which is the representation map. 
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Proposition 2.6. I f  PR and p~ are equivalent right (resp. left) Aq(K)-corepresentations 
then ind G(pg) and" a , md K (pg) are equivalent right (resp. left) Aq ( G)-corepresentations. 

Proof. Let pg " V --> A q ( K )  ® V and PR : W --> A q ( K )  ® W be equivalent. Then there 
exists a vector space isomorphism F " V --+ W such that p[  e F ---- (id ® F) o PR. Let us 
consider the vector space isomorphism 

[~ = F ® id : V ® Aq(G)  ---> W ® Aq(G).  

First note that F(indGK (pR)) C indGK(p~). Let v ® f E indG(pR). We want to prove that 

F(v)  ® f verifies 

F(v)  ® L ( f )  = p~(F(v ) )  ® f ,  

which follows from 

PR(F(v))  ® f = ((id ® F) o pR)(V) ® f = (id ® F ® id)(pR(v)  @ f )  

= (F  ® id ® id) (v  ® L ( f ) )  = F(v)  ® L ( f ) .  

Next we prove that the vector space isomorphism F" intertwines corepresentations, i.e. 

(id ® A 6 )  o F = (F  ® id ) ( id  ® AG), 

which follows from 

(id ® AG) o F ( v  ® f )  = (id ® Ac;) (F(v)  ® f )  = F(v)  ® AG f 

= (F  ® id) (v  ® A c f )  

= ([~ ® id ) ( id  ® A c ) ( v  ® f ) .  [] 

Another relevant property is the behaviour of the induction procedure with respect to direct 
sums. Let pj and p2 be right corepresentations of the coalgebra C, respectively, on vector 
spaces V and W; we may then define the following right C-corepresentation: 

Pl Gp2 " V • W ~ C Q  (V • W) (2.1l) 
Pl G P2 = (id ® t v )  o pl o p v  + (id ® l w )  o p2 o pw ,  

where z v • V --~ V ~)  W and l w : W -+ V ~)  W are the natural immersion maps and 
Pv " V ~ )  W --> V and p w  : V ~ )  W --> W are the natural projections (with obvious 

modifications for direct sums of left corepresentations). 

Proposition 2.7. Let (pk, Vk), k E N be right (resp. left) Aq(K)-corepresentations of  a 

given coisotropic quantum subgroup ( Aq ( K),  Jr) o f  Aq ( G). Then we have an equivalence 

of  right (resp. left) corepresentations 

ind~ ( ~  Pk) - @ indGK(pk)' t 

In part icular, / f ind G (p) is irreducible then p is irreducible. 
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Proof.  Due to associativity of  the direct sum it is sufficient to prove the theorem for k = 

1, 2. We will begin proving that pv  ® id + pw ® id is an isomorphism of vector spaces 
of ind G (pl @ P2) in ind G (Pl) ~ )  ind G (P2). Due to the fact that the above map is a linear 

isomorphism of (V ~ W) ® Aq(G) in (V ® A q ( G ) ) ~ ( W  ® Aq(G)) it is sufficient to 

prove that (Pv ® id )F  E ind , (p1)  and (Pw ® id)F  E ind/~(p2). We have: 

(id ® L) (pv  ® id )F  

= (Pv ® i d  ® id)( id ® L ) F  

= (pv ® id ® id)((pl G P2) ® i d )F  = ((Pv ® id) o (Pl @ P2)) ® id(F)  

= (Pv ® id)[(tv ® id) o Pl o Pv + (tw ® id) o P2 o Pw] ® id(F)  

= [(tv ® id) o Pl o Pv ® id](F) = (Pl ® id) (pv  ® id)F,  

and similarly for (Pw ® id). We can then identify the vector spaces writing for every 

f E ind G (Pl • p2), f = f l  + f2 with f l  c ind G (Pl) and f2 ~ ind G (P2). 
The intertwining property follows trivially from 

(id ® AG) f = (id ® A G ) ( f  I + f2) = (id ® AG)f l  + (id ® AG)f2. [] 

One more property of  the classical induction procedure that we want to mimic is double 

induction, i.e. what happens when we start with two subgroups, one of which contains 

the other, and a representation of  the smaller one. At this purpose let us remark that a 

coisotropic quantum subgroup cannot have a quantum subgroup but only coisotropic quan- 

tum subgroups. Let us consider then the case in which Aq (K) is a quantum subgroup of  

Aq (G), coisotropic or not, and Aq (H) is a coisotropic quantum subgroup of Aq (K). 

Proposi t ion 2.8. Let PR be a right (resp. left) Aq (H)-corepresentation on V. Then there 
is an equivalence of right (resp. left) Aq (G)-corepresentations between 

indGH (PR) -- ind G (ind K (PR))- 

Proof.  Let us denote with YrKH and YfGK, respectively, the maps defining H as a quantum 

subgroup of  K and K as a quantum subgroup of  G and let ZrGH = 7rKH o 7rOH defining H 

as a quantum subgroup of  G. Let us denote with LG K, L K H and LG t4 the corresponding left 
corepresentations granted by Proposition 2.1. Let us remark that L G H = (Zr K H ® id) o L 6 K- 
The required isomorphism between representation spaces is given by 

id @ LGK : indG(p) ----> indG(indK(p)).  

To prove it we remark that elements of  the second space are those v ® g ® f in V @ 
Aq (K) ® Aq (G) verifying 

(1) p R ( v ) ® g ®  f = Z v ® r c K t 4 ( g ( t ) ) ® g ( 2 ) ®  f ,  
(g) 

(2) v ® AK(g) ® f = ~ v ® g ® rCGK(f(I)) ® f(2). 
(f) 
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Applying id ® eK ® id @ id to this second identity gives 

v ® g ® f = Z S K ( g ) v  ® JrGK(f(i)) ® ,/121. 
(.f) 

from which one can prove that v @ g @ f ~-~ ~(g)v @ f is both a left and a right inverse 
of id ® LcK.  The fact that the actions are intertwined results from coassociativity of ,4(;. 

This proves the proposition. [] 

Let us lastly show how the induction procedure interacts with automorphisms of the Hopf 
algebra structure. Let Aq (G) be the quantum group and (Aq (K), re) a coisotropic quantum 

subgroup. Let c~ ~ Aut(Aq (G)) be a Hopf-algebra automorphism. Then there exists one 
and only one coalgebra automorphism (~ • Aq(K) -~ Aq(K) such that: 5 o Jr = re o c~. 

Proposition 2.9. In the above hypothesis there exists an equivalence of Aq ( G)-right corep- 

resentations 

ind~ ((id ® ~) o PrO = (id @ o0(ind~ (pR)). 

Proof. The vector space of the left-hand side Aq (G)-corepresentation is 

{F c V @ Aq(G)l(id @ L)F  = (id ® 6t @ id)(pR ® id)F}. 

If F belongs to ind~ (p) then 

(id ® L)( id ® ce)F 

= v ® L ( ~ ( f ) )  = v ® ((zr ® id),5(ot(f))) 

= v ® ((re ® id)(ot ® o~(Af))) = v @ ((6t @ ~)(re ® i d ( A f ) ) )  

= (id ® 6t @ ~)(v @ L ( f ) )  = (id @ 6t ® 5)(v @ p ( f ) )  

= (id ® 5)(p(v))  ® a ( f ) ,  

and this proves the isomorphism between the vector spaces carrying the representation. The 
intertwining property is a simple consequence of ot being a coalgebra morphism. [] 

3. Geometric realization on homogeneous quantum bundles 

The purpose of this section is to explicit the relations between induced corepresentations 
from coisotropic quantum subgroups and embeddable quantum homogeneous spaces. We 
will split the two cases of quantum and coisotropic subgroup, although the first one is a 
special case of the second, to point out the differences. Much of what follows is strongly 
related to results in Refs. [5,7,8], where the theory of quantum principal bundles with 
structure group given by a coalgebra has been developed. Those results are reinterpretated 
(and slightly generalized) here in the context of induced corepresentations. This reflects what 
happens in the classical case where there is a bijective correspondence between induced 
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representations and homogeneous vector bundles (i.e. vector bundles associated to principal 
bundles [ 19]). For some additional details on the quantum bundle interpretation we refer to 

[ 14], although limited to the compact and less general quantum subgroup case. 

Let Aq (G) be a Hopf  algebra with invertible antipode and let (Aq (K), 7r) be a quantum 
subgroup. Let Bx be the corresponding quantum quotient space 

BK = { f  ~ Aq(G)[(yr ® i d ) A ( f )  = 1 ® f} .  

Let PR be a Aq (K) right corepresentation on V and let ind G (PR) be the space of the induced 
Aq (G)-corepresentation. 

L e m m a  3.1. indG(pR) is a left and right BK-module, with the action given by linear 
extension of 

b . ( f  ® v ) = ( b f  ®v), ( f  ® v ) . b =  f b ® v .  

Proof i  Let v ® f ~ ind G (PR)- Then 

L(v ® bf)  = Z v @ zr(b(1)f{l)) ® b(2)f{2) 
(b)(f) 

= E v ® e(b(i))yr(ffl)) ® b(2)yr(f(2)) 
(b)(f) 

= E v ®fcll ® hf~2) = Z v(o) ® vii) @ bf  = h. (PR @ id)(v ® f ) .  
(.f) (v) 

The same proof holds for the right action (Jr is an algebra morphism). [] 

Let us now recall that linear maps f ,  g : Aq (K) --) Aq (G) can be multiplied according 
to convolution 

( f  * g)(k) = E f(k(1))g(k(2)). 
(k) 

If  f is a map from Aq(K) to Aq(G) its convolution inverse, if it exists, is a map f - l  : 
Aq (K) --+ Aq (G) such that 

E f ( k ( l ) ) f - I  (k(2)) = e(k) l = E f - t  (k(l))f(k(2)). 
(k) (k) 

Def in i t i on  3.2.  A quantum subgroup is said to have a left (resp. fight) sect ion i f  there exists  
a linear, convolut ion invertible,  map ~b : Aq(K) --~ Aq(G) such that: 

(i) 4)(1) = 1; 

(ii) (Jr ® id )  A G o 4) = (1 ® 4)) o A K (or, respect ive ly  (ii')) (i d ® yr) Zl G o 4) = (~b ® 1) o A K. 
If, furthermore,  ~b is an algebra m o r p h i s m  then (Aq (K), 7r) is said to be trivializable.  

The second  condit ion is an intertwining condit ion be tween  the corepresentation o f  A q (K) 
on i tse l f  and its corepresentat ion on Aq (G). 
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Proposition 3.3. Let us suppose that ( Aq (K), yr ) has a section ok. Then." 
(i) Aq(G) is isomorphic to Aq(K)  ® BK as a vector space; 

(ii) ind~ (PR) is isomorphic to V ® BK as a BK-module (both left and right). 

105 

Proof. First of all let us consider the following lemma, which can be proved with usual 
Hopf algebra techniques. 

L e m m a  3.4. The convolution inverse of the section 4) verifies 

(Yr ® id)Z~Gdp -I = (S ® ~-I)z'I,2AK, 

where rl,2 is the map interchanging terms in tensor product. 

Let us now start from f c Aq (G). Then 

f = Z e ( f ( , , ) f ( 2 ) =  E s ( r r ( f , , ) ) ) f ( 2 ,  -=- Zqb(Tr(f, ,)))qb-'(rr(f ,2)))f(3).  
(/) ~j,) {f) 

Let us now prove that y~(./.) ~b- J (Tr(ft j)))f(;) belongs to BK. 

(Tr @ id) A ( E  dp-l (yr(f( l)) ) f(2) ) 

= E 7r(~b-l(Tr(f(1)))(i))f(2),,, ® (~b-l(Yr(f(1)))(2)fl2))(2) 
t) 

= Z SK (Yr(f(2)))Yr (f(3)) ® ~b-1 (Yr (f(l i))f(4) 
fl 

= ~ l ® e ( f a 0 ~  -I (~(f(l)))f(s, 
(.r) 

= 1 ® Z ~b-t (Tr(f(i)))f(2). 
(.t) 

This proves that the map A,  : Aq(K) ® BK ---+ Aq(G) linearly extending k ® b w-~ dp(k)b 
is surjective and its right inverse is given by 

a ~  I : f ~-+ E y r ( f ~ l ) )  ® q~-l(Tr(fc2)))fl3). 
(t) 

Let us verify that A~ 1 is also a left inverse: in fact 

A~ l(c~(k)b) = E 7r(~b(k)~l)b~l)) ® 4~ l(Yr(qb(k)(21bI21))qS(k)(3)b(31 
(b)(4Hk)) 

using the fact that (ii) of Definition 3.2 implies that (yr ® rc ® id)(AG ® id) AGga equals 
(id ® id ® qb)( AK ® id)AK we have 
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~(~b(k)(1)) ®~ I(~(~(k)(2)))~(k)(3)b=~k(l) ® g b  I(k(2))(o(k(3))b 
(S(k)) (k) 

= ~ e(ki2))k(i ) ® b = k ® b, 
(k) 

which proves the claim. 

The second isomorphism, although more involved, can still be verified explicitly defining 

it and its inverse. Let us first consider 

T s : V ~ indG(pR), v ~ ~ v(0) @ q~(v~i)). 
(v) 

We want T s to take values in index (PR). This is true if and only if 

Z pR(V(0)) N ~b(v(i)) = Z v(0) ® (Jr N id)Ac(dP(V~l))), 
(v) (v) 

which follows from straightforward calculation. Let us now define I s • V ® BK 
ind~(pR) as the linear extension of v ® b --> TS(v) . b. We want to prove that I s is 
bijective, which we will do by showing that its bilateral inverse is the linear extension 
of 

IS(v ® f )  ---- Z v ® ~b - I  (-~(f(I)))f(2) = Z 19(0) ® q~-I (v(1))f. 
(f) (v) 

On the one hand 

l¢  ( I s (v  ® b ) ) = Z IS (vI°) ® (a(v(i)) )b 
(v) 

= Z V(O) ®q)-I(~(q)(v(1))(l)b(l)))q)(v(l))(2)b(2) 
(t')(b)(S(v(i I )) 

= ~ v(0) ® gb- 1 (Tr (q~ (v(i)))(l)lq5 (v(1))(z)b 
(v)(S(vdp) 

= Z V(O) ® (9 -1 (V(l)dl)dp(V(l)lz))b = v ® b 
(v) 

The fact that I s takes its values in V ® BK follows from the first part of the proof. 
Finally, 

= ~ v(o~ N 4~(van,,)q~ -1 (vl l~2,)f  = v N f .  
(v) 

This proves the proposition. [] 
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The second isomorphism of the proposition can be considered a morphism of Aq (G)- 

comodules provided we put on V ® BK the right coaction. Explicitly this is given by 

e rR :  V @ BK ~ V ® BK @ Aq(G) 

= Z v!o)¢ I(V(O)(L,)qS(V(I))/I )®b( l~®q~(v t  ))12)bi21 CrR(V ® b) 
(b)(~b (l'12))'l(v) 

----- Z v(o)®bi I )®¢( t ' ( I} )b(2) .  
(t'j(b} 

We also remark that in the case of  right sections we would have obtained a BX-module 

homomorphism for ind~ (PL) both on the left and on the right. 
Let us now consider the more delicate situation in which we start from a right corep- 

resentation PR of a left (resp. right) coisotropic quantum subgroup (C, Jr) of Aq(G). Let 
Bc be the corresponding embeddable quantum homogeneous space. Then we can multiply 

functions on the space of induced representation by functions on the homogeneous space 
only on one side. 

L e m m a 3 . 5 .  If (Aq(K), Jr) is a left (resp. right) coisotropic quantum subgroup then 
ind G (PrO is a right (resp. left) sub-Be-module (resp. sub BC-module) of V ® Aq (G). 

Proof.  Let us consider the case of a right coisotropic subgroup. The claim follows from 

the following chain of  equalities, for every f c Aq (G) and b c Be" 

v ® (jr @ id )A( fb )  = Z v ® 7r(fll)b(1)) ® f(2)b(2t 
(.f )(b ) 

= Z v ® 7r(ftl)e(b,2))b, 1)) ® if2, = E vl°) ® vii' ® ,lb. 
[)(b (v} 

This completes the proof. [] 

Let us remark that the convolution product of linear maps f ,  g • C ~ Aq (G) is still well 

defined. 

Definition 3.6. A right (resp. left) coisotropic subgroup (C, Jr) is said to have a section ¢ 

if there exists a linear map Ca : C --~ Aq (G) convolution invertible and such that: 
(i) ¢(rr(1))----- 1; 

(ii) Y~.~jr(4)(c)~l~u) ® ¢(c)(21 = Y~i~lrr(vlltu) ® ¢(rr(vl2))) for every c c C, u E 

Aq (G) and v 6 Jr -  I (c). 

(resp. (ii')) Y~OI,') ¢(c)(i)®zr(u49(c)(21) = ~l~,~ ¢(jr(vii))®jr(uv(2))) for every c e C. 

u ~ Aq(G) and v 6 J r - I (c ) .  
If, furthermore, ¢ is a right (resp. left) Aq(G)-module map then it is said to be a 

trivialization. 

L e m m a  3.7. The convolution inverse of a right coisotropic subgroup section verifies 
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Z 7g(49-1 (C)(1)U) ® 49-1 (C)(2) = y ~  7t'(S(u(2)u)~b -1 (Tg(1)(l)))), 
¢(c) (v) 

where c ~ C, v ~ zr- l (c). 

Let us remark that u = 1 yields again condition (ii) of Definition 3.2. 

Proposition 3.8. Let us suppose that (C, Jr) is a right coisotropic subgroup with section 

49. Then." 

(i) Aq (G) is isomorphic to C ® Bc  as a vector space; 

(ii) indG(pR) is isomorphic to V @ BC as a left Bc-module. 

Proof. Let f ~ Aq (G). Using Lemma 3.7 one can prove, like in Proposition 3.3, that 

Z ( f )  49--1 (7g(f(i)))f(2) belongs to Bc.  The inverse isomorphisms A~ and A~ ~ are then 
realized exactly as in Proposition 3.7. Also the second part of the proof goes along exactly 

in the same way. [] 

Note that the Bc-module isomorphism of Propositions 3.3 and 3.8 proves that ind G (PR) 
is a projective Bc-module, which is a natural property to ask, as generalization of Swan's 

theorem, to spaces of sections of quantum bundles. 
The explicit isomorphism of Proposition 3.8 can be used to describe the corepresentation 

directly on V ® Bc.  The 9t-q (G)-coaction ~'R on this space is given by 

rR(V @ b) = Z b(l)49(v(2))(l) ® b(2)49(v(2))(2)49 -1 (v(i}) ® v(0) 
(b)(v)(v(I))((o(v(2))) 

= Z b(1) ® ~(V(l))b(2) ® v(o). 
(v)(b) 

This allows a complete description of the induced corepresentation from the following data: 
the homogeneous space Bc and the section 4). This can be very useful in applications as 
the following examples will show. 

Let us start with the non-standard Euclidean quantum group EK (2) as described in [3]. 
The coisotropic subgroup we will consider is the coalgebra C with a denumerable family 
of group-like generators Cp, p ~ Z and with restriction epimorphism 

;r(v p) = Cp, :rr(al) = 7r(a2) = 0 

This is nothing but the quantum analogue of the circle subgroup. We remark that it cannot 
be given a quantum subgroup structure because such a re cannot be an algebra morphism 
[6]. The corresponding quantum homogeneous space is the x-plane 

[al, a2] = x(al -- a2). 

This embeddable quantum homogeneous space has an easily computed section 

¢ : C ---> EK(2), Cp ~ v p. 
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Starting from one-dimensional irreducible corepresentations of  this subgroup p,, • 1 --+ 

1 ® c,, we obtain as corepresentation space the x-plane with coaction 

• .E~(2) v - I ) v  n 1 ) - l ) v  n v n lno C (Pn)(al)  = (v + ® a l  -- i(v -- ®a2  + a l  @ !, 
• .E~ (2) 
mno c ( p , , ) ( a e ) = i ( v - - v - l ) v n ® a l + ( v + v  I ) v " ® a 2 + a 2 v " ® l .  

For n = 0 this is nothing but the regular corepresentation on the x- plane. Using the 

duality pairing explicitly described in [3] it is easy to derive an algebra representation of the 

corresponding quantized enveloping algebra, which is never irreducible. The corresponding 

decomposition into irreducibles amounts to Ex (2)-harmonic analysis on the x-plane and 

has been carried through in [3] for the n = 0 case. 

The second, similar, example is given by the standard Euclidean quantum group Eq (2) 

with the family of right coisotropic subgroups (C, 7rz), where C is as before and the restric- 

tion epimorphism is given by 

Yr(vrnS n k) = qZr(k +s)~/s ~k cr(C-I ; q -)k(Cl: q ' L .  

The corresponding quantum homogeneous spaces are called quantum hyperboloids and 
3 -  

described in [1,9]; they are algebras in two generators, z and ~, with relation zz = q - z z  + 
9) (1 - q-  . For such coisotropic quantum subgroups there is a family of  sections 

(Or " C -+ Eq (2), Cp ~-* v z'-r. 

Starting from one-dimensional irreducible corepresentations Pm" 1 w-* 1 ® cm we obtain 

Eq (2)-corepresentations on the quantum hyperboloids given by 

• ,Eq(2) pm_r+ 1 pm n 
m a  C (Pm)(Z) = ® Z + ® 1, 

• .E,I(2) vm+r- I  vm~t 
m o  C (Pm)(Z) = ® =~ + ® 1. 

The decomposition into irreducibles for the infinite-dimensional corresponding Hq ( e ( 2 ) ) -  

representat ion is dealt with, in the r = 0-case, in [ 1 ]. 
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